Reactions of Zerovalent Palladium Complexes with Dimethyl Acetylenedicarboxylate; Ligand Effects on the Formation of Palladiacyclopentadiene Complexes

By Ts. Ito, S. HASEGAWA, Y. TAKAHASHI, and Y. ISHII*

(Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan)

Summary Bis(dibenzylideneacetone)palladium(0) reacts with dimethyl acetylenedicarboxylate to give either palladiacyclopentadiene complexes or π -bonded acetylene complexes, according to the ligands.

In view of recent reports by Maitlis *et al.*^{1,2} we report related results. Treatment of bis(dibenzylideneacetone)palladium-(0) [(dba)₂Pd] (I) with dimethyl acetylenedicarboxylate (mad) in acetone under nitrogen gave the palladiacyclo-

pentadiene complex (II) which reacted with excess of ligand $[L = bipy \text{ or P(OPh)}_3]$ to give the monomeric palladiacyclopentadiene complexes (VI), in agreement with Maitlis' results.² More conveniently, palladiacyclopentadiene complexes (VI) could be prepared by the simultaneous addition of ligands and mad to a suspension of (dba)₂Pd in acetone.

Reagents: i, mad; ii, $\dot{C}(:O) \cdot CH = CH \cdot C(:O) \cdot O$.

Palladiacyclopentadiene complexes such as (II) or (VI) could be formed via a zerovalent π -acetylene-palladium

- ^a K. Moseley and P. M. Maitlis, Chem. Comm., 1971, 1604.
- ³ Y. Takahashi, Ts. Ito, S. Sakai, and Y. Ishii. Chem. Comm., 1970, 1065.
- ⁴ E. O. Greaves and P. M. Maitlis, J. Organometallic Chem., 1966, 6, 104.
- ⁵ Ts. Ito, Y. Takahashi, and Y. Ishii, preceding communication.

intermediate. Thus, addition of mad to excess of $P(OPh)_3$ and $(dba)_2Pd$ in benzene solution gave $[P(OPh)_3]_2Pd(mad)$ (IIIa), m.p. 136–138° (ca. 50%), which was identified by n.m.r. and i.r. spectroscopy and elemental analyses $[v_{C \equiv C}$ 1845 cm⁻¹ (KBr disc), τ (CDCl₃) 6.57 (6H, s, OMe) and 2.9 (30H, m, Ph). (IIIa) is surprisingly stable in air and in benzene or chloroform solution. Further addition of mad to (IIIa) did not afford the expected (VI; L = P(OPh)_3] which was prepared independently via (II).

However, with PPh₃ as ligand, the stepwise reactions (I) \rightarrow (IIIb) and (IIIb) \rightarrow (VIb) were successful. A similar complex (IIIb; L = PPh₃)⁴ gave (VI; L = PPh₃) by addition of a second molecule of mad in benzene solution at room temperature, strongly suggesting that the π complex (IIIb) is an intermediate in the formation of (VIb).

Complex (Va) obtained as in the preceding communication,⁶ gave (IIIa) quantitatively on reaction with mad in benzene at room temperature, but (Vc), which has a more basic ligand, gave directly the corresponding palladiacyclopentadiene complex (VIc); (L = bipy) with mad.

In conclusion, intermediate π -complexes (III) are more stabilized as the π -acceptor character of L increases, in the order: bipy $\sim o$ -phen \ll PPh₃ < P(OPh)₃: indicating the following: (i) intermediate (III) would be stabilized by π -acceptor ligand such as P(OPh)₃ and would thus not give (VI); (ii) the less stable intermediate (IIIb; L = PPh₃) could afford (VI). Other basic ligands such as bipy, o-phenanthroline (ophen), tetramethylenediamine (tmeda), pyridine (py), dimethylglyoxime (dmg), 1,2-bis(methylthio)ethane (dte), and biacetyldianil (badn) gave directly the corresponding palladiacyclopentadiene complexes (VIc—i), respectively.

We thank Dr. Kenji Itoh for helpful suggestions.

(Received, 1st March 1972; Com. 347.)

¹ K. Moseley and P. M. Maitlis, Chem. Comm., 1971, 982.